2024-12-19 08:38:00
phys.org
In-plane magnetic fields are responsible for inducing anomalous Hall effect in EuCd2Sb2 films, report researchers from the Institute of Science Tokyo. By studying how these fields change electronic structures, the team discovered a large in-plane anomalous Hall effect.
These findings, published in Physical Review Letters on December 3, 2024, pave the way for new strategies for controlling electronic transport under magnetic fields, potentially advancing applications in magnetic sensors.
The Hall effect is a fundamental phenomenon in material science. It occurs when a material carrying an electric current is exposed to a magnetic field, producing a voltage perpendicular to both the current and the magnetic field. This effect has been extensively studied in materials under out-of-plane magnetic fields. However, research on how in-plane magnetic fields induce this phenomenon has been very limited.
In recent years, in-plane magnetic fields have attracted growing interest due to their potential to unlock new material behaviors, particularly in materials with singular points in their electronic band structures, such as EuCd2Sb2.
Against this backdrop, a team of researchers from Institute of Science Tokyo and the RIKEN Center for Emergent Matter Science (CEMS), led by Associate Professor Masaki Uchida, explored how in-plane magnetic fields induce the anomalous Hall effect in EuCd2Sb2 films. Their study sheds light on how these fields induce a distinctive change in electronic band structures.
Uchida explains, “Our findings highlight a new way to manipulate the Hall effect in magnetic materials. This opens up exciting possibilities for future technologies that rely on precise magnetic field measurement, such as magnetic sensing.”
The team’s efforts revealed that in-plane magnetic fields lead to a significantly large anomalous Hall effect in EuCd2Sb2 thin films. This effect changes its sign with rotation of the in-plane magnetic field, exhibiting clear three-fold symmetry for rotation of the in-plane magnetic fields.
Furthermore, the study revealed that these effects are linked to an unusual out-of-plane shift of the singular points in electronic band structures. This shift corresponds to the manifestation of orbital magnetization, which is the rotational motion of an electron wave packet, formulated in modern terms as a quantum geometric tensor in solids.
This discovery deepens our understanding of how in-plane magnetic fields change the material’s internal structure.
The researchers also discovered that even small adjustments in the angle of the magnetic field could lead to significant variations in the in-plane anomalous Hall effect. This directional dependence further highlights the material’s versatility and its potential for use in technologies that require precise measurement of magnetic fields along specific directions.
Uchida concludes, “The present work not only heralds a breakthrough in experimentally studying orbital magnetization, but also stimulates materials development for future applications, revolutionizing the concept of the Hall effect ‘from out to in.'”
Overall, this study enhances our understanding of how in-plane magnetic fields influence the electronic properties of advanced materials, such as EuCd2Sb2, bringing us closer to developing materials with tailored magnetotransport properties for future technologies.
More information:
Ayano Nakamura et al, In-Plane Anomalous Hall Effect Associated with Orbital Magnetization: Measurements of Low-Carrier Density Films of a Magnetic Weyl Semimetal, Physical Review Letters (2024). DOI: 10.1103/PhysRevLett.133.236602. On arXiv: DOI: 10.48550/arxiv.2405.16722
Provided by
Institute of Science Tokyo
Citation:
In-plane magnetic fields reveal new Hall effect behaviors in advanced materials (2024, December 19)
retrieved 19 December 2024
from https://phys.org/news/2024-12-plane-magnetic-fields-reveal-hall.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
Enjoy the perfect blend of retro charm and modern convenience with the Udreamer Vinyl Record Player. With 9,041 ratings, a 4.3/5-star average, and 400+ units sold in the past month, this player is a fan favorite, available now for just $39.99.
The record player features built-in stereo speakers that deliver retro-style sound while also offering modern functionality. Pair it with your phone via Bluetooth to wirelessly listen to your favorite tracks. Udreamer also provides 24-hour one-on-one service for customer support, ensuring your satisfaction.
Don’t miss out—get yours today for only $39.99 at Amazon!
Support Techcratic
If you find value in Techcratic’s insights and articles, consider supporting us with Bitcoin. Your support helps me, as a solo operator, continue delivering high-quality content while managing all the technical aspects, from server maintenance to blog writing, future updates, and improvements. Support Innovation! Thank you.
Bitcoin Address:
bc1qlszw7elx2qahjwvaryh0tkgg8y68enw30gpvge
Please verify this address before sending funds.
Bitcoin QR Code
Simply scan the QR code below to support Techcratic.
Please read the Privacy and Security Disclaimer on how Techcratic handles your support.
Disclaimer: As an Amazon Associate, Techcratic may earn from qualifying purchases.