2025-07-11 10:30:00
phys.org

Neutrinos are elementary particles that are predicted to be massless by the standard model of particle physics, yet their observed oscillations suggest that they do in fact have a mass, which is very low. A further characteristic of these particles is that they only weakly interact with other matter, which makes them very difficult to detect using conventional experimental methods.
The KATRIN (Karlsruhe Tritium Neutrino) experiment is a large-scale research effort aimed at precisely measuring the effective mass of the electron anti-neutrino using advanced instruments located at the Karlsruhe Institute of Technology (KIT) in Germany.
The researchers involved in this experiment recently published the results of a new analysis of data from the second measurement campaign in Physical Review Letters, which set new constraints on interactions involving neutrinos that could arise from unknown physics that is not explained by the standard model, also known as general neutrino interactions.
“We know that beyond standard model (BSM) physics is hiding in the neutrino sector, but we don’t know what it looks like yet,” Caroline Fengler, lead analyst for this search, told Phys.org. “That’s what has motivated us already in the past to look for various BSM physics phenomena with KATRIN, such as light and heavy sterile neutrinos and Lorentz invariance violations.
“The theory work by the group of Werner Rodejohann then gave us the incentive to broaden our search to any possible new neutrino interactions that might contribute to the weak interaction of the beta decay.”
The new interactions that the researchers started looking for could hint at the existence of various exciting physical phenomena outside that are not predicted by the standard model of particle physics, but that have been widely explored by theorists. For instance, they could indicate the presence of various hypothetical particles, including right-handed W bosons, charged Higgs bosons, and Leptoquarks.

“The main purpose of the KATRIN experiment is to measure the mass of the neutrino,” explained Fengler. “This is done through a highly precise measurement of the energy spectrum of the electrons originating from tritium beta decay, using a high-activity tritium source and a one-of-a-kind electron spectrometer. The shape of the recorded beta spectrum then contains information about the neutrino mass and other BSM physics contributions.”
Notably, general neutrino interactions are predicted to prompt characteristic shape deformations of the so-called beta spectrum, which is the distribution of electron energies emitted during a type of radioactive decay known as beta decay. The KATRIN collaboration thus set out to search for these beta spectrum deformations in the data collected as part of the experiment.
“With only a small part (5%) of the final KATRIN dataset, we were already able to set competitive constraints on some of the investigated new neutrino interactions compared to the global constraints from other low-energy experiments,” said Fengler. “This shows that the KATRIN experiment is sensitive to these new interactions.”
While the KATRIN experiment did not detect signs of general neutrino interactions yet, it set competitive constraints on the strength of these new and elusive interactions, employing a new experimental approach. The KATRIN collaboration hopes that these constraints will contribute to the future search for physics beyond the standard model.
“We are already working on further improving our sensitivity on the general neutrino interactions with KATRIN by extending the data set and fine-tuning our analysis approach,” added Fengler. “With the beginning of the upcoming TRISTAN phase at KATRIN in 2026, which is set out to search for keV sterile neutrinos with the help of an upgraded detector, we will gain access to another powerful data set, which promises to greatly improve our sensitivity in the future.”
Written for you by our author Ingrid Fadelli,
edited by Lisa Lock, and fact-checked and reviewed by Andrew Zinin—this article is the result of careful human work. We rely on readers like you to keep independent science journalism alive.
If this reporting matters to you,
please consider a donation (especially monthly).
You’ll get an ad-free account as a thank-you.
More information:
M. Aker et al, First Constraints on General Neutrino Interactions Based on KATRIN Data, Physical Review Letters (2025). DOI: 10.1103/PhysRevLett.134.251801
© 2025 Science X Network
Citation:
The KATRIN experiment sets new constraints on general neutrino interactions (2025, July 11)
retrieved 11 July 2025
from https://phys.org/news/2025-07-katrin-constraints-general-neutrino-interactions.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
Enjoy the perfect blend of retro charm and modern convenience with the Udreamer Vinyl Record Player. With 9,041 ratings, a 4.3/5-star average, and 400+ units sold in the past month, this player is a fan favorite, available now for just $39.99.
The record player features built-in stereo speakers that deliver retro-style sound while also offering modern functionality. Pair it with your phone via Bluetooth to wirelessly listen to your favorite tracks. Udreamer also provides 24-hour one-on-one service for customer support, ensuring your satisfaction.
Don’t miss out—get yours today for only $39.99 at Amazon!
Help Power Techcratic’s Future – Scan To Support
If Techcratic’s content and insights have helped you, consider giving back by supporting the platform with crypto. Every contribution makes a difference, whether it’s for high-quality content, server maintenance, or future updates. Techcratic is constantly evolving, and your support helps drive that progress.
As a solo operator who wears all the hats, creating content, managing the tech, and running the site, your support allows me to stay focused on delivering valuable resources. Your support keeps everything running smoothly and enables me to continue creating the content you love. I’m deeply grateful for your support, it truly means the world to me! Thank you!
BITCOIN bc1qlszw7elx2qahjwvaryh0tkgg8y68enw30gpvge Scan the QR code with your crypto wallet app |
DOGECOIN D64GwvvYQxFXYyan3oQCrmWfidf6T3JpBA Scan the QR code with your crypto wallet app |
ETHEREUM 0xe9BC980DF3d985730dA827996B43E4A62CCBAA7a Scan the QR code with your crypto wallet app |
Please read the Privacy and Security Disclaimer on how Techcratic handles your support.
Disclaimer: As an Amazon Associate, Techcratic may earn from qualifying purchases.